Sparse multi-stage regularized feature learning for robust face recognition
نویسندگان
چکیده
The major limitation in current facial recognition systems is that they do not perform very well in uncontrolled environments, that is, when faces present variations in pose, illumination, facial expressions and environment. This is a serious obstacle in applications such as law enforcement and surveillance systems. To address this limitation, in this paper we introduce an improved approach to ensure robust face recognition, that relies on two innovative ideas. First, we apply a new multiscale directional framework, called Shearlet Network (SN), to extract facial features. The advantage of this approach comes from the highly sparse representation properties of the shearlet framework that is especially designed to robustly extract the fundamental geometric content of an image. Second, we apply a refinement of the Multi-Task Sparse Learning (MTSL) framework to exploit the relationships among multiple shared tasks generated by changing the regularization parameter during the recognition stage. We provide extensive numerical tests to show that our Sparse Multi-Regularized Shearlet Network (SMRSN) algorithm performs very competitively when compared against different state-of-the-art methods on different experimental protocols, including face recognition in uncontrolled conditions and single-sample-per-person. Keywords—Neural Networks, Shearlets, Sparsity, Shearlet Networks, Wavelet Networks, Face Recognition.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملl2, 1 Regularized correntropy for robust feature selection
In this paper, we study the problem of robust feature extraction based on l2,1 regularized correntropy in both theoretical and algorithmic manner. In theoretical part, we point out that an l2,1-norm minimization can be justified from the viewpoint of half-quadratic (HQ) optimization, which facilitates convergence study and algorithmic development. In particular, a general formulation is accordi...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملOccluded Face Recognition Based on Dictionary Learning and Sub-classifier Fusion
Facial recognition is a challenging area of research due to difficulties with robust face recognition (FR) under occlusion and sparse representation-based classification (SRC) only focusing on face global features. To solve these issues, we proposed an occluded FR method based on dictionary learning for sparse representation and sub-classifiers fusion (LSSRC), which efficiently combines local a...
متن کاملTwo-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification
In this paper, we propose a two-stage multi-task learning representation method for the classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach uses multi-features joint sparse representation learning, modeled as a ℓ 2 , 1 -norm regularized multi-task sparse learning problem, to find an effective subset of training samples. Then, a new dictionary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015